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ON '$IFHE INPOWWT4IDN-'FmOBETHCAL FOUNDATIONS 
OF QUANTUM STATlSTBCS 

Ahstracb. En the paper we study a few basic definitions and facts 
concer~ling statistical quantities for a quantum-lheorct~c measure- 
ment problem. The discussion is in the spirit of the inforormation- 
theoretical fountlations of classical statistics. 

O. We are going to discuss in a very simple way some basic problems of 
quantum statistics from the point sf view of information theory. This leads 
us naturally to the W*-algebra setting of quantum theory, where the 
bounded observables of a physical system are represented by the self-adjoint 
elements of a W*-algebra, and tke states are represented by positive linear 
functionals on this algebra [2], [3]. Our approach has been suggested by 
some works of Rknyi ( [ I O ] ,  [ll]) on the foundations of classical statistics. 
Another approach has been presented in [5]-[9] where rich bibriographical 
information can be found. 

We shall consider a compound system which consists, roughly speaking, 
of two parts: parameter hypothesis B and measurement 5 .  That is why we 
shall deal with the tensor product of two von Neumann algebras (and a state 
on this product algebra). 

1. Let us begin with some notation and definitions. Throughout the 
paper, d will denote a von Neurnann algebra (acting in a Hilbert space m. 
.d@B will stand for the W*-tensor product of two !+'*-algebras ,a;i' and 99 
(see [I] and [12]). p will denote a normal faithful state on d@d. 

Now, we are in a position to introduce suitable definitions. 

1.1. The parameter ?typothesis is given by a self-adjoint operator of the 
form 

N 



The projectors p, corresponding to the eigenvalues 8, play the role of 
'5q~1estions"" about the val~~es of the parameter 8, and p, is interpreted as the 
hypothesis that the true value of the parameter B is equal to 8,. 

The number 

will be called the (a  priuri) entropy of 8 at the state / A .  

1.2. The measurement is represented by a self-adjoint operator 5 affiliated 
to .d, with the spectral representation 

rZ 

5 = J C1 Eg Cd4, 
-a 

wherc Ee ( . )  denotes the spectral measure of 5 .  Thus p( l@ES( . ) )  is a Bore1 
probability measure on the real line, and p(l@E<(Z)) will be interpreted as 
the probability that the rneasuremnt < (in our compound system) gives 
values from the Bore1 set Z. 

1.3. Wc define the a posteriori entrupjI M(815) (of 8 after the rncasurement 
{ has been accomplished) by the formula 

with II/: x - t x l g x  ( x E ( O ,  1)) and 

where E,(-1.) denotes the conditional expectation ([13], 1[14]) and $ ( g k )  is 
defined by the Spectral Theorem. Because of the commutativity of the 
operators p@1 and 1635, the conditional expectation E, can be described in 
terms of the Radon-Nikodym derivatives. Therefore, we can write 

The operator H(B15) is interpreted as the physical quantity describing the 
amount of information concerning Q still missing after having observed <. 
The number 

is called the average amount of this information. 

2.. The "separation" of the operators p and 5 by taking their commuting 
extensions p@1 and 1 0 5  makes it possible to imitate the classical pro- 
cedures in a rather true way. When one repeats the measurement 5, the state 
p defined on the product &'@I&' can (and should) reflect the alterations of 
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the state in the algebra .d, caused by the measurements 5 .  The arbitrariness 
of the choice of the state tr in the tensor product of algebras enables us to 
establish the entropy measure somewhat according to the physicist's wish, 
which seems to permit him to accentuatk those aspacts of the experiment 
which are more interesting for him. Connections with the classical situation 
are conspicuous. For a formal proof of the properties discussed in the article, 
one can construct suitable commutative von Neurnann algebras, make use of 
their isomorphism with the algebras Lm(M,  m) and, in consequence, of the 
classical results (for the algebras Lm [ N ,  m) and elements affiliated with them). 
It seems, however, lhat because of the simplicity of direct considerations, it is 
more purposeful to disregard the possibilities the theorem on representation 
of W*-algebras gives and to carry out the proofs directly. We shall only 
confine ourselves to outlining them since they imitate the classical 
procedures. 

The amount of information 6(819), contained in the observation 5 (con- 
cerning the parameter O), is given by the difference 

We have 

so I (OJZ) = H ( 6 )  - R (01t) 2 0. It is easy to show that if p is a product state p 
= v,  @vz over Ld@d, then 1(81{) = 0. 

2.1. Let g: R -+ Rm be a Borel function. The vector with operator-valued 
components g(t)  = (gl (c), . . . , gm({)) is called a statistic. Instead of R{8(5) we 
can consider the quantity R(Blg(t)). The definition of R(O/g( ( ) )  is evident. 
Namely, we put 

with 

where &, ( - J W * ( x ,  . . .)) denotes the conditional expectation with respect to 
the W*-subalgebra generated by x's (generated by the elements 
1 0 g l  (0,. . . , 1 Qg, (g) in our case). 

If we take into consideration g(t) instead of E ,  then only the information 
about 8 contained in g ( ( )  is taken into account and, as a rule, some 
information is lost. That is why, putting 
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we inay expect that 

~(@ls( t ) )  6 i (0 I t )  

or, equivalently, 

(41 R(0151 G ~(@ls(O).  
We prove (4). Note that the operators q, and Qk [defined by (1) and (3)) 

are positive, and 

Moreover, q, and Q, belong to the commulative algebra W'(105). More 
exactly, they can be represented by functions defined on the interval (a, b) 
3 spectrum (1 @t) (a, b may be infinite): 

It is easy to check that for a, 3 0 and pk 2 0 such that 

the inequality 

1 aklg~k 2 C g,lgD, 
k k 

holds. Thus 

Integrating this inequality with respect to vr ( - ) = p(1 @ES (du)), we obtain 

To get (4), it is enough to show that 

I q k  Ig Q k )  = P (Qk lg Q k ) .  

But qk~W*(l@() ,  Qk€  W3@(1Ogj({), j = 1 ,..., N) and, evidently, 

W"(105) 2 W*(10gj(5),j = 1 ,..., N ) ,  

which completes the proof. 

2.2. We call a statistic g = (g ,  ,..., g,) sufficient for B if 

J(%lg (0) = 11615). 
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The statistic q ( t )  = ( q l ,  ..., y,), where qj are defined by (1) is sufficient. 
Indeed, it is enough to verify that 

4 k  = ~ p ( f i @ l I ~ ~ s - ~ . , q ~ ) r  

and this follows immediately from the definition of q j .  

3. In this section we discuss the choice of an optimal decision concerning 
the parameter 0 (made on the basis of the observation 0. By a decision we 
mean an operator of the form 

where 1-4, (0,. . . , (5)  are pairwise orthogonal self-adjoint projectors from 
W*( t )  such that 

The operator will be interpreted as a decision that the true value of B 
is equal to Ij,. The probability of such a decision is equal to y (lQR,({)). 

We shall compare decision operators (5)  with the parameter operator 

3.8. A standard decision operator A,  is defined by the formula 

where II: = E5 (Zj) and (Z1,. . . , ZN) is an arbitrary (Borel measurable) de- 
composition of the interval [a, b] such that 

the functions f, being the Radon-Nikodym derivatives defined by (2). Of 
course, R;E W*(()  for j = 1,. . ., N. From what follows it will be clear that 
the standard.decision does not depend on the choice of the ddecomposition 
( Z , ,  . . ., Z,) (in the case where there is more than one decomposition of the 
kind described above, satisfying condition (6)). 

3.2. In this section we show that the standard decision do is optimal in a 
natural sense. We treat a pair (8, A)  as a random vector by putting 

P r ( 8 = B i k , A = O l ) = p ( p k @ i ) n l )  for k , i = l ,  ..., N .  

Then the error 6 of the decision A is defined by 6 = R(A # 0). 
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Denoting by 6, the error of the standard decision A,, we show thd  

Indeed, let (5) be an arbitrary decision. Then If, must be of the form IT, 
= E,(&) (k = 1,. .., N), where (Vl , .  . ., VN) is a decomposition of the interval 
[a, b] (because l l k ~  W* (5)), and we have 

N 

But 

P ( P ~ @ R ~ )  = 1 fk ( ~ 1 ~ 5  ( d ~ ) ,  
Vk 

where vr ( - )  = p(E, ,t ( .)) and f i  is the corresponding Radon-Nikodym de- 
rivative. Thus 

In particular, 

6, = 1-C J jif;,(u)v,(du). 
I' Z k  

By the definition of the sets Z,, we have obviously (7). 

3.3. In  this section we prove that the information-theoretical point of 
view is in accordance with the usual procedures of statistics. Namely, we 
show that for every sequence of observations (5 , )  the following conditions 
are equivalent : 

where 2i0 stands for the corresponding errors of standard decisions A,( ( , ) .  
In other words, if the information about parameter 8, missing after 

having observed t,, is small, then the error of the corresponding standard 
decision A,(c , )  is small, and conversely. 

To show this we prove the following two inequalities: 

and 

(cf. [4], Section 3.3). 
We first prove (8). We have 
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where vc(du) = f i [ E I m p ( d t d ) ] .  Using the definition of Zj, we can write 

Using twice the Jensen inequality, we obtain 

which completes the proof of (83% 
To prove (9) observe that 

Since 

(10) 

we get 

The last formula leads to (8) by (9) and the formula for the conditional 
entropy. The proof is completed. 
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